Sustaining Agricultural Change Through ecological engineering and Optimal use of natural resources

Josef Settele & Anja Schmidt

www.staccato-project.net
josef.settele@ufz.de; a.schmidt@ufz.de

BiodivERSa/FACCE-JPI joint call on “Promoting synergies and reducing trade-offs between food supply, biodiversity and ecosystem services”
Partners & Financiers

Germany:

UFZ - Helmholtz-Centre for Environmental Research
(Josef Settele, Anja Schmidt et al.)

LfULG - Saxon State Agency of Environment, Agriculture & Geology
(Isabelle Besuch, Walter Schmidt et al.)

LMS - Landratsamt Mittelsachsen
(Kai Pönitz)

(BCE - Butterfly Conservation Europe)
(Sue Collins)

DLR - Project Management Agency
Partners & Financiers

Bulgaria:

AU - Agricultural University Plovdiv
 (Tatyana Bileva, Julieta Arnaudova et al.)

IBER-BAS - Bulgarian Academy of Sciences Sofia
 (Vlada Peneva et al.)

Pensoft
 (Lyubomir Penev, Pavel Stoev)
Partners & Financiers

Romania:

Sapientia Hungarian University of Transylvania
* (Tibor Hartel et al.)

UBB - Babeș-Bolyai-University Cluj
* (Laszlo Rakosy, Cristina Craioveanu et al.)

Fundăția ADEPT Transilvania
* (Razvan Popa, Nat Page et al.)
Partners & Financiers

Sweden:

SLU - Swedish University of Agricultural Sciences Uppsala
Erik Öckinger, Riccardo Bommarco et al.

Lund University
Johanna Alkan Olsson, Juliana Dänhardt
Partners & Financiers

Switzerland:

WSL - Swiss Federal Research Institute

(Niklaus E. Zimmermann, Rafael Wüest et al.)
Partners & Financiers

Spain:

UAB - Autonomous University of Barcelona

(Beatriz Rodríguez-Labajos et al.)
Overall objectives

• Quantifying sensitivity of EcoSystem Services (ESS) & Functions (ESF) to environmental pressures in representative agriculturally dominated landscapes in Europe

• Selection of a subset of ESF and ESS of particular relevance for the land use systems concerned
ESS/ESF considered

Based on the Millennium Ecosystem Assessment (MEA):

• **Provisioning Services (PS):** Primary production, Plant diversity, Crop yield, Nutrient status

• **Regulating Services (RS):** Invertebrate diversity & interactions, Biocontrol of crop pests, Crop pollination

• **Cultural Services (CS):** Aesthetics/Beauty, Recreation, Cultural Identity
Interlink these ESS with the most relevant pressures impacting upon them

1) land use intensity
2) biodiversity loss
3) climate change
4) inputs and outputs of the socio-economic system in which they are embedded

and with the changes of these pressures over time (i.e. the impacts of global change).
Study design

- landscapes shaped by annual crops and semi-natural grasslands
- 10 field sites / country
- along a gradient of 0 % to 20 % (semi-)natural habitats in surrounding landscape reflecting changing geo-climatic and land use intensity and socio-economic conditions
- 1 field site = 1 semi-natural grassland + 1 oilseed rape
Study design

Field Site
Study design

Field Site

Field Site
Study design

Field Site

Structural richness (semi-natural habitats)

0% 20%
Study design

Field Site

Semi-natural grassland

Crop field

Field Site

100-500m

Structural richness (semi-natural habitats)

0%

20%
Sites - Bulgaria

Parvomaj
Sites - Romania
Sites - Romania
Sites - Germany
Field work - data acquisition

- Butterfly diversity
- Butterfly parasitism
- Pollen beetle parasitism
- Adult pollen beetle abundance
- Carabidae (Ground beetles)
- Staphylinidae (Rove beetles) and spiders
- Grasshoppers
- Bees
- Plants
- Flower density

- Soil fauna
- Litter decomposition
- Soil chemistry
Socio-ecological data collection

Questionnaire

<table>
<thead>
<tr>
<th>Questions about the farmer (Categorical)</th>
<th>Farm size</th>
<th>Time of dedication to farming</th>
<th>Tenure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farmers’ perceptions on ... (Rating → Ordinal)</td>
<td>CES</td>
<td>Changings in the areas (including LUC)</td>
<td>Outcome of the change</td>
</tr>
<tr>
<td>Farming practices (Categorical, numerical)</td>
<td>Cropland</td>
<td>Grassland</td>
<td>Abandonment</td>
</tr>
<tr>
<td>- Period since land abandonment / reason</td>
<td>- Crop / yield / price (study year, previous year)</td>
<td>- Use of grassland</td>
<td>- Use of crops / use of residues</td>
</tr>
<tr>
<td></td>
<td>- Fertilised used / amount of fertiliser / cost</td>
<td>- Date of cutting</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Pesticide used / type / dates of application / cost</td>
<td>- Grazing: period of grazing / type of livestock / number of animals</td>
<td></td>
</tr>
</tbody>
</table>
Stakeholders: agriculture related

• Farmers and their families
• Municipal administrative agents: agricultural officers, extension workers
• Crop production ‘chain agents’: middlemen and traders (e.g. in charge of drying, cleaning, milling and marketing)
• Crop production ‘input providers’: traders of seeds, fertilizers and pesticides
• Higher level administrators: provincial agricultural officers, agricultural administration
STACCATO - core approach(es)

- analyses based on **input** from and **exchange** with the relevant stakeholders
- consider different **land use** and **climate change scenarios** and their effects on environmental threats in the future
- results are to be implemented again in close collaboration with relevant stakeholder
- particular focus on **Ecological Engineering (EE)** as core mechanism of eco-functional intensification
STACCATO - work flow

WP 1 Multi-Stakeholder Analysis

WP 2 Provisioning Services

WP 3 Regulating Services

WP 4 Cultural Services

WP 5 Integration

WP 6 Implementation

WP 7 Dissemination & WP 8 Coordination
STACCATO - work flow

 WP 1 Multi-Stakeholder Analysis

 WP 2 Provisioning Services
 WP 3 Regulating Services
 WP 4 Cultural Services

 WP 5 Integration

 WP 6 Implementation

 WP 7 Dissemination & WP 8 Coordination

http://staccato-project.net/
Thank you!
SusTaining AgriCultural ChAnge Through ecological engineering and Optimal use of natural resources - the STACCATO project

Anja Schmidt¹, Beatriz Rodríguez-Labajos², Erik Öckinger³, Juliana Dänhardt⁴, Julieta Arnaudova⁵, Laszlo Rakosy⁶, Lyubomir Penev⁷, Nat Page⁸, Niklaus E. Zimmermann⁹, Pavel Stoev⁷, Rafael Wüest⁹, Razvan Popa⁸, Riccardo Bommarco³, Sue Collins¹⁰, Tatyana Bileva⁵, Tibor Hartel¹¹, Vlada Peneva¹², Walter Schmidt¹³, Josef Settele¹,¹⁴

1) Helmholtz-Centre for Environmental Research – UFZ, Department of Community Ecology, Theodor-Lieser-Straße 4, D-06110 Halle, Germany
2) Autonomous University of Barcelona, Campus UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain
3) Swedish University of Agricultural Sciences, Department of Ecology, PO Box 7044, SE-750 07 Uppsala, Sweden
4) Centrum för miljö- och klimatforskning, Lunds universitet, SE-223 62 Lund, Sweden
5) Agriculture University Plovdiv, 12, Mendeleev str., 4000, Plovdiv, Bulgaria
6) Babes-Bolyai University, Str. M. Kogalniceanu nr. 1, Cluj-Napoca, 400084, Romania
7) Pensoft Publishers Ltd., 12, Prof. G. Zlatarski St., 1700 Sofia, Bulgaria
8) Fundatia ADEPT Transilvania, Str. Principală Nr. 166, Saschiz 547510, Județul Mureș, Romania
9) Swiss Federal Research Institute, Zürcherstr. 111, CH-8903 Birmensdorf, Switzerland
10) Stichting Butterfly Conservation Europe, P.O. Box 506, 6700 AM Wageningen, Netherlands
11) Sapientia University, 400193 Cluj-Napoca, Calea Turzii no. 4. Cluj county, Romania
12) Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2, Yrii Gagarin Street, 1300 Sofia, Bulgaria
13) Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie, August-Böckstiegel-Straße 1, 01326 Dresden, Germany
14) iDiv, German Centre for Integrative Biodiversity Research, Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany