DNA-metabarcoding to assess the impact of cropland management on soil functions

Dahle, S.¹, Fossøy, F.¹, Rusch, G. M.¹, Peneva, V.², Lazarova, S.², Elshishka, M.², Vagalinski, B.², Dedov, I.², Yordanov, Y³, Blaalid, R.¹, Åström, J.¹

2) Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Street, 1113 Sofia, Bulgaria.
Introduction: Ecosystem services in Bulgaria:

- **Background:**
 - Biodiversity in agroecosystems provide critical functions that support agricultural productivity: two examples are soil nutrient circulation and pollination of pollinator-dependent crops. The level of generation of these ecosystem services is associated with the qualities of the agricultural fields and the landscape.

- **Aim:**
 - To assess how the biological and abiotic qualities of cropland soils that underpin important ecological functions supporting ecosystem services, are associated with cropland practices.
Introduction:
What is the impact of cropland management on soil functions?

Large-scale intensive production.
Small scale extensive production.
Introduction:
What is the impact of cropland management on soil functions?

Soil management: not plowing
plowing
Introduction:
Soil functional diversity revealed by environmental DNA (eDNA) metabarcoding.

- Drummond et al. 2015
 - Ribosomal markers:
 - 18S marker
 - Eukaryotic marker
 - 16S marker
 - Procaryotic marker

- Next generation sequencing

- Comparison with reference database
Methods:
Soil sampling in 60 Bulgarian vineyards.

- Three management practices:
 - conventional large-scale agricultural (20)
 - eco-certified production (20)
 - traditional small-scale (20)
Methods:
Soil sampling in 60 Bulgarian vineyards.
Methods: Soil sampling in 60 Bulgarian vineyards.

- eDNA soil sampling:
 - within a 20 x 25 m grid: 20 subsamples
 - from the subsample mix: 15 g soil for DNA analysis per vineyard
Methods: Soil sampling in 60 Bulgarian vineyards.

- Samples taken for assessment of:
 - nematode communities using traditional methods
 - soil characteristics (texture, pH, N, C, P, K)
Methods:
Analysis – status as of February 1.

- Analysis done by SpyGen
 - DNA extraction, amplification
 - Next generation sequencing
 - Comparison with reference database
- 18S marker
 - Analysis completed
- 16S marker
 - Analysis not completed
- Chemical analysis
 - Partly completed
- Traditional taxonomy
 - Analysis not completed
Preliminary results: eDNA, 18s eukaryotic marker.

- All vineyards combined:
 - Total number of MOTUs (molecular taxonomic units): 1331

- Average number of MOTUs/sample: 210

<table>
<thead>
<tr>
<th>Phylum</th>
<th>No MOTUs*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascomycota</td>
<td>311</td>
</tr>
<tr>
<td>Arthropoda</td>
<td>205</td>
</tr>
<tr>
<td>Streptophyta</td>
<td>150</td>
</tr>
<tr>
<td>Basidiomycota</td>
<td>141</td>
</tr>
<tr>
<td>Nematoda</td>
<td>94</td>
</tr>
<tr>
<td>Chytridiomycota</td>
<td>23</td>
</tr>
<tr>
<td>Bacillariophyta</td>
<td>20</td>
</tr>
<tr>
<td>Annelida</td>
<td>17</td>
</tr>
<tr>
<td>Glomeromycota</td>
<td>17</td>
</tr>
<tr>
<td>Xanthophyceae</td>
<td>12</td>
</tr>
<tr>
<td>Entomophthoromycota</td>
<td>10</td>
</tr>
<tr>
<td>Rotifera</td>
<td>9</td>
</tr>
<tr>
<td>Tardigrada</td>
<td>8</td>
</tr>
<tr>
<td>Apicomplexa</td>
<td>6</td>
</tr>
<tr>
<td>Chordata</td>
<td>6</td>
</tr>
<tr>
<td>Platyhelminthes</td>
<td>6</td>
</tr>
<tr>
<td>Chlorophyta</td>
<td>4</td>
</tr>
<tr>
<td>Porifera</td>
<td>3</td>
</tr>
<tr>
<td>Blastocladiomycota</td>
<td>2</td>
</tr>
<tr>
<td>Entorrhizomycota</td>
<td>1</td>
</tr>
<tr>
<td>Mollusca</td>
<td>1</td>
</tr>
<tr>
<td>Phaeophyceae</td>
<td>1</td>
</tr>
</tbody>
</table>
Preliminary results:
eDNA, 18s eukaryotic marker.
Management type (intensive/organic/private)
Preliminary results: eDNA, 18s eukaryotic marker. Management type (intensive/organic/private)

- Non-metric multidimensional scaling
Preliminary results:
eDNA, 18s eukaryotic marker.
Soil management (plowing, grass)
Preliminary results: eDNA, 18s eukaryotic marker. Soil management (plowing, grass)

- Non-metric multidimensional scaling
Next steps

- Add bacterial diversity to the dataset (16s marker)
- Add data on soil properties to the analysis
- Compare the results from the traditional taxonomic analysis of nematodes to the eDNA dataset.
- Identify functional groups and relate their presence to the management type.
Thank you

- On behalf of the fieldteam:
 - Boyan Vagalinski, Sondre Dahle, Vlada Peneva, Yavor Yordanov, Milka Elshishka, Stela Lazarova

- And:
 - Coordinators at IBER
 - Svetla Bratanova-Doncheva
 - Dedov, I
 - Personnel at NINA
 - Frode Fossøy
 - Graciela Rusch
 - Jens Åström
 - Rakel Blaalid
 - Eva Bellemain at SpyGen